SIMULTANEOUS REMOVAL OF NO AND SO, WITH H2S OVER SOLID CATALYSTS

Tokio IIZUKA,* Tsutomu ICHIKAWA, Shinji EGASHIRA, and Kozo TANABE

Department of Chemistry, Faculty of Science,

Hokkaido University, Sapporo 060

The reduction of NO and ${\rm SO}_2$ with ${\rm H}_2{\rm S}$ was examined over various metal oxide catalysts at 150-200 °C. Molybdenum oxide supported on MgO was most active for the reduction of NO and ${\rm SO}_2$ among the catalysts used. Alumina also showed considerably high activity, but the activity depended markedly on the preparation of the catalyst.

The reduction of NO_{x} with NH_3 over solid catalysts has been widely developed. However, for SO_{x} containing stack gas, NO_{x} and SO_{x} have been removed separately. If the removal of NO_{x} and SO_{x} is achieved in the same catalytic system, the process might be very effective. The reaction of SO_2 and $\mathrm{H}_2\mathrm{S}$ is well known as Claus reaction and $\mathrm{Al}_2\mathrm{O}_3$ is used as a catalyst industrially. Although the simultaneous removal of NO_{x} and SO_{x} with $\mathrm{H}_2\mathrm{S}$ has been proposed as Princeton Research method, the detail of this reaction is not reported yet. The formulas are as follows.

$$2NO + 2H_2S \longrightarrow 2S + N_2 + 2H_2O$$
 (1)

$$SO_2 + 2H_2S \longrightarrow 3S + 2H_2O$$
 (2)

In this work, the authors have examined the simultaneous reduction of NO and $\rm SO_2$ with $\rm H_2S$ over various metal oxide catalysts and found that molybdenym oxide supported on MgO was best for the reaction.

The catalysts of ${\rm Al_2O_3}$, ${\rm ZrO_2}$, ${\rm Fe_2O_3}$, and ${\rm TiO_2}$ were prepared by the hydrolysis of corresponding metal salts and were calcined at 500 °C for 2 h. Niobium oxide was obtained by the calcination of niobium oxide hydrate (CBMM AD-108) at 500 °C for 2 h. Commercially available activated alumina (Nishio KAT-6) and silica-

alumina (NIKKI N-631-L) were also used for comparison. Supported molybdenum oxide catalysts were prepared by a conventional impregnation method with an aqueous solution of ammonium heptamolybdate (MoO $_3$ 12 wt%). The mixed oxide catalysts were prepared by a coprecipitation method as reported previously. The catalysts were evacuated at 500 °C for 2 h before use. The mixture of NO (1067 Pa), SO $_2$ (1067 Pa), H $_2$ S (4000 Pa) and argon (4000 Pa) was allowed to react in a recirculation reactor having a volume of 320 m&. The reacted gas was analyzed mass-spectrometrically. The products were N $_2$, H $_2$ O and sulfur. The amounts of formed sulfur and H $_2$ O were not analyzed. The conversion was calculated on the basis of the decrease of NO or SO $_2$.

The time course of reaction over MoO_3/MgO is depicted in Fig. 1. The MoO_3/MgO catalyst exhibited an excellent activity for the simultaneous reduction of

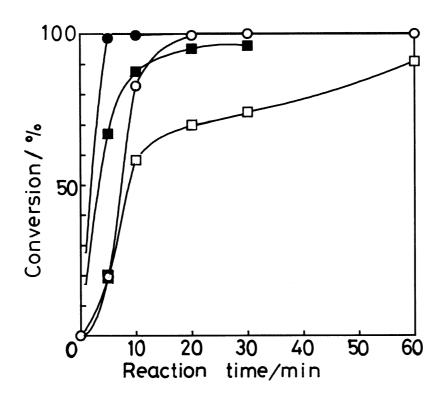


Fig. 1. Reduction of NO and SO_2 with H_2S over MoO_3/MgO .

- □ NO, O SO₂ (150 °C reaction)
- NO, SO₂ (200 °C reaction)

Table 1. NO + SO_2 + H_2S reaction over various catalysts

Catalyst	Surface area m ² .g ⁻¹	Reaction temp	Reaction rate 10 ⁻² mol·min ⁻¹ ·g ⁻¹		Reaction rate 10 ⁻⁵ mol·min ⁻¹ ·m ⁻²	
			Al ₂ O ₃ [from Al(NO ₃) ₃	196]	200	1.87
		150	0.40	0.14	2.04	0.76
Al ₂ 0 ₃ a)	215	200	0.28	1.07	1.32	4.97
MgO	214	200	0.09	0.14	0.43	0.65
Fe ₂ 0 ₃	13	200	0.15	0.23	11.30	17.30
Nb205	126	200	0.56	0.98	4.44	7.81
SiO ₂ -Al ₂ O ₃ [Si/Al=17/3]b)	333	200	0.01	0.90	0.03	2.71
MoO ₃ /MgO	209	200	2.00	2.98	9.57	14.30
J		150	0.86	1.22	4.09	5.81
MoO ₃ /Al ₂ O ₃ a)	136	200	0.26	0.69	1.90	5.06
MoO ₃ /Nb ₂ O ₅	36	200	0.23	0.78	6.33	21.70
MoO ₃ /ZrO ₂	50	200	0.44	0.77	8.77	15.33
MoO ₃ /CaO	29	200	0.60	1.19	20.70	41.12
Nb205/Al203	167	200	0.10	0.20	0.60	1.17
Fe ₂ O ₃ -SiO ₂ [Fe/Si=1/9]	286	200	0.29	0.49	1.00	1.72
$Fe_2^{0}3^{-Si0}2$ [Fe/Si=9/1]	149	200	1.01	0.53	6.81	3.53
Fe ₂ 0 ₃ -Zn0 [Fe/Zn=2/1]	27	200	0.16	0.58	6.07	21.40
Fe ₂ 0 ₃ /Mg0	111	200	0.28	0.47	2.54	4.24
Fe ₂ 0 ₃ -Al ₂ 0 ₃ [Fe/Al=1/9]	228	200	1.48	2.36	6.49	10.35
Fe ₂ 0 ₃ -Al ₂ 0 ₃ [Fe/Al=1/1]	166	200	1.24	2.72	7.49	16.39
Fe ₂ 0 ₃ -Al ₂ 0 ₃ [Fe/Al=9/1]	50	200	1.27	2.55	25.43	51.06

a) Activated ${\rm Al_2^0_3}$ [Nishio KAT-6]. b) [Nikki N-631-L].

both NO and SO_2 with $\mathrm{H}_2\mathrm{S}$. The reduction of SO_2 was easier than that of NO and especially at a reaction temperature of 200 °C, SO_2 was almost completely decomposed within 5 min. The product of sulfur condensed on the reactor wall of unheated position and the deactivation of catalyst was not notable after the repeat of reaction several times at 200 °C. The initial activities of various catalysts are summarized in Table 1.

On the basis of unit surface area, $\text{Fe}_2\text{O}_3\text{-Al}_2\text{O}_3$ [Fe/Al=9/1], Fe_2O_3 and $\text{MoO}_3\text{/CaO}$ showed high activities. However, $\text{MoO}_3\text{/MgO}$ showed the highest conversion per unit weight and the activity was stable at 200 °C as mentioned above.

Activated alumina showed rather low activity for NO reduction, though the reduction of SO_2 was fast. In contrast to this, alumina prepared from nitrate was considerably active for the both reactions of NO and SO_2 . This indicates the importance of preparation of Al_2O_3 catalyst to achieve high activity. Silicallumina showed the lowest activity for the reaction, though NO + H_2S reaction was reported to be enhanced by silica gel or glass wool. As a whole, the catalysts which have a basic nature tend to have the high activity. Probably the basic sites are important for the dissociation of H_2S to HS^- and H^+ and HS^- is a key intermediate for the reduction of NO and SO_2 .

In the reaction at 150 °C, MoO_3/MgO was more active than Al_2O_3 prepared from nitrate. Thus, MoO_3/MgO is promising for the simultaneous removal of NO and SO_2 with H_2S .

This work was supported by a Grant-in-Aid for Environmental Science No. 59035001 from the Ministry of Education, Science and Culture of Japan.

References

- 1) A. V. Deo, I. G. Dalla Lana, and H. W. Habgood, J. Catal., 21, 270 (1971).
- 2) W. Bartok et al., Esso Research and Engineering Co. Report No. GR-2-NOS-69, NAPCA Contract No., PH 22-68-55, Nov. (1969).
- 3) E. Rodenas, T. Iizuka, H. Katsumata, and K. Tanabe, React. Kinet. Catal. Lett., 19, 341 (1982).
- 4) T. Iizuka, H. Tatsumi, and K. Tanabe, Aust. J. Chem., 35, 919 (1982).
- 5) J. A. Pierce, J. Phys. Chem., 33, 22 (1929).